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Hydrogen production systems (500 bn m3/year)
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Alkaline Electrolysers (commercial, eff 65-70%, <30 bar, 70-75°C)
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Alkaline Electrolysers not suitable for electricity dispatching, because of high transients



PEM Electrolysers (first applications since 1990, eff 70-78%, 10 bar, 60-80°C)
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PEM higher current density, efficiencies and modulation capacity, but higher costs, low pressure,
membrane technology



Solid Oxides Electrolysers
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L No complete info (Germany leader, TRL7, 50-100 mc/h)

1 Costs approx (6.000-10.000 €/kWe)

O Highest efficiency (3,6 kWh/nm3)

O Potential application of co-electrolysis: Water vapour
together with CO2 splitting for synt methane
production into the stack

O SOFC reverse avoiding thermal fatigue
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Technologies deployment

Key Drivers

Renewable costs continue to fall
» System integration challenges
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Electrolyser cost is projected to halve

Main Focus

/

%* Project cost and equipment cost trends

/

+» Efficiency and lifetime
+» Compressor and on-site storage linkages
with operation and capabilities to provide flexibility

¢ Potential of technological innovation

* Electrolyser projects rapidly growing in size angd number
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2 MW PEM Hydrogen production costs (Irena 2019)

Hydrogen from renewables has a great potential but electrolyser costs need to further decrease

Today 2050
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Main assumptions about electrolysers: Load factor: 4200 hours (48%), conversion efficiency 65% (today), 75% (2050)



Hydrogen production costs: renewable electricity prices, CAPEX of electrolysers
and operating hours
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Source: IRENA 2019

Hydrogen from renewables has a great potential but Electrolysers costs need to further decrese

CAPEX, electricity price and operating hours are the main drivers for determinig the GREEN-H2 production costs



Cumulative supply chain target costs for hydrogen in transport (Irena, 2016)
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Based on HINICIO (2016), present costs estimate at the pump from US DOE (2018). However Japan current
estimate is 10 USD/kg. Target prices for production: IRENA analysis. Target prices at the pump of 2 USD/kg for
Japan, 5 for US and 6-7 for Europe. See text for references.)

Source: IRENA 2019



The experience of Sapienza University of Rome Lab towards Smart Energy Systems
which include hydrogen

d Power-to-gas H2 for transport and building sectors, hydrogen
injected into the natural gas grid or hydrogen with CO2 and
convert to bio-methane (Sabatier), or using the output gas of a
wood gas generator or a biogas plant, and mixed with the
hydrogen to upgrade the quality of the biogas.

(J Renewable electrofuels using electrolysis based on electricity
from fluctuating renewable energy sources

1 Grid and storages options. By combining the electricity, thermal
and transport sectors, the grids and the storages in these
sectors can improve the energy system flexibility and
compensate for the lack of flexibility from RES

1 Short and long term storage options in an effective penetration
of renewables energy systems and so are the infrastrifcture and
grids that enable such storage



Different application for Power —to — X (Irena 2019)

Power-to-X is an
umbrella term for a
number of
conversion, storage
and reconversion
pathways that use
surplus electric
power from
renewable energy,
typically solar and
wind. “X” stands for
the type of energy
into which the
electricity surplus is
being converted.
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P2G logical scheme
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Why investigating on H,NG blends as the most handy-forward P2G application

H, is a carbon free fuel (vector)

 High adiabatic flame temperature

« Laminar speed burning 8 times faster than NG one
» Zero carbon emissions

« Water emissions only

* High NO, production with air combustion

* Energy intensive production process and high costs

H,NG use to achieve lower CO, and NO, emissions

» Owing to the higher H/C ratio. the CO and CO, values deriving from H,NG burning are lower than any other gaseous
fuel

» Lower NOx emissions than NG in ultra lean combustion conditions

» Environmentally-friendly fuel if the hydrogen production carbon footprint is close to zero.

H,NG as one of the Power to Gas (P2G) options for electrical energy storage

» To mitigate troubles and inefficiencies related to the electricity time-shift and to renewable capacity firming (i.e. NG
pipeline injection. artificial Hydrocarbons synthesis )

H,NG burning can increases ICE mechanical efficiency

* Application for sustainable mobility and static power generation as well
* Increase of combustion efficiency due to faster burning speed
» The espansion stroke is characterized by lower energy losses (toward adiabatic one)
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