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Background: The Climate System

Five components that interact among them through different overlapping and complex processes.

— -

5 i

¢ Biosphere

These five components are interconnected through various biogeochemical cycles (like the water
cycle and carbon cycle) and feedback loops. They influence each other on different spatial and
temporal scales, leading to the complex and dynamic nature of our planet.



Background: The Climate System

The components of the climate system, their processes, and interactions.
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Background: The Climate System

The Sun is the major source of energy for Earth’s oceans, -atmosphere,
land, and biosphere. Averaged over an: entire year, approximately 342
watts of solar energy fall upon every square meter of Earth. This is a
tremendous amount of energy — 44 quadrillion (4.4 x 1016) watts of power
to be exact. : -




Background: Sun & Climate System

The Sun is the major source of energy for Earth’s oceans, atmosphere, land, and biosphere. Averaged
over an entire year, approximately 342 watts of solar energy fall upon every square meter of Earth.
This is a tremendous amount of energy — 44 quadrillion (4.4 x 10'%) watts of power. As a
comparison, a large electric power plant produces about 1 GW (1 x 10°watt) of power. It would take
44 million such power plants to equal the energy coming from the Sun.

Summer

Winter .
Northern Hemisphere G —— Northern Hemisphere

Southern Hemisphere

44 quadrillion watts = 5.5 million of the most powerful
nuclear power plant
Kashiwazaki-Kariwa

Nuclear Power Plant
(capacity 8 GW)




Background: The Climate System

S and Space Administration

eartn's energy buaget

The Earth’s energy budget describes the
various kinds and amounts of energy that
enter and leave the Earth system. It includes

reflected by both radiative components (light and heat),
clouds & reflected by  total outgoing that can be measured by CERES, and other
: ; atmosphere surface infrared radiation components like conduction, convection,
Incoming 77.0 22.9 239.9 and evaporation which also transport heat

solar radiation
340.4

from Earth’s surface. On average, and over
the long term, there is a balance at the top
of the atmosphere. The amount of energy
coming in (from the sun) is the same as the
amount going out (from reflection of sunlight
and from emission of infrared radiation).

total reflected e—— atmospheric

solar radiation . window
emitted by ——e 40.1 latent heat
atmosphere (change of state)
169.9
\ elmitéed 0)Y
absorbed by " § absorbedb Sohce
atmosphere | i pherey ‘ 29.9 the;zlalcgo
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absorbed by emitted by back
surface surface radiation
163.3 398.2 340.3

_ net absorbed = ~ evapotranspiration
(1X2)

All values are fluxes in Wnr2
based on ten years of data

Loeb et al., J. Clim. 2009
Trenberth et al., BAMS, 2009

www.nasa.gov NP-2010-05-265-LaRC



Background: The Climate System

The most basic way to characterize the climate system is describing it as a
nonequilibrium thermodynamic system, generating entropy by irreversible
processes and — if time-dependent forcings can be neglected — keeping a
steady state by balancing the input and output of energy and entropy with

the surrounding environment.

Schneider and Bony, Nature Geo. 2014



State of Cimate: Global Surface Temperature

== Met Office
Global mean temperature difference from 1850-1900 ( ° C)
1.6 —— HadCRUT5

1.4- NOAAGIobalTemp
1.2- — GISTEMP ’
T ERAS
- JRA-55
& 0.8~ Berkeley Earth
s OB

0.4- A A ol )

0.2~ , 1 A [ ' \ A/ v \ M / Y W
0.0- ; ‘ s, ’1, ;,“’ , \/ s ,’

0.2 ' AL A A

-0.4- . , , , | , ,
1850 1875 1900 1925 1950 1975 2000 2025

Yeal’ © Crown Copyright. Source: Met Office
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Annual global mean temperatures expressed as a difference from pre-industrial conditions. Four different data sets are shown -
HadCRUT, NOAAGlobalTemp, GISTEMP, and Berkeley Earth - as well as two reanalyses - ERA5 and JRA-55. Dataset anomalies are
calculated relative to a 1981 to 2010 baseline and offset by 0.69° C, which is the best estimate difference for that period from
the 1850-1900 average given in the IPCC sixth assessment report.
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State of Cimate: Global Surface Temperature

7 Surface air temperature anomalies in 2024
& Data: ERAS « Reference period: 1991-2020 -« Credit: C3S/ECMWF
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Surface air temperature anomalies in 2024, relative to the average for the 1991-2020 reference period. A non-linear colour scale is used to

enhance the visibility of smaller anomalies and distinguish larger deviations. Data source: ERA5. Credit: C3S/ECMWEF.
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State of Cimate: Global Surface Temperature

Data: ERAS 1979-2024 « Reference period: 1991-2020 « Credit: C3S/ECMWF

(/@\\ Anomalies and extremes in surface air temperature in 2024

Coolest Much cooler Cooler Near Warmer Much warmer Warmest
than average  than average average than average  than average
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Surface air temperature anomalies in 2024, relative to the average for the 1991-2020 reference period. A non-linear colour scale is used to

enhance the visibility of smaller anomalies and distinguish larger deviations. Data source: ERA5. Credit: C3S/ECMWEF.
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State of Cimate: Global Surface Temperature

Data: ERA5 (1979-2024) « Reference period: 1991-2020 « Credit: C3S/ECMWF
) ‘

(/«@\ Anomalies and extremes in sea surface temperature in 2024

Seaice & Coolest Much cooler Cooler Near Warmer Much warmer Warmest
ice shelves than average than average average than average than average
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Anomalies and extremes in sea surface temperature for 2024. Colour categories refer to the percentiles of the temperature distributions for the
1991-2020 reference period. The extreme (‘coolest’ and ‘warmest’) categories are based on rankings for the period 1979-2024. Values are
calculated only for the ice-free oceans. Data source: ERAS5. Credit: C3S/ECMWEF. M



State of Cimate: water vapour in the atmosphere

@ Record amount of water vapour in the atmosphere in 2024

Annual global mean total column water vapour anomalies for 60°S-60°N
Data: ERAS - Reference period: 1992-2020 - Credit: C3S/ECMWF
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Annual anomalies in the average amount of total column water vapour over the 60 ° S-60 ° N domain relative to the average for the 1992~
2020 reference period. The anomalies are expressed as a percentage of the 1992-2020 average. Data: ERA5. Credit: C3S/ECMWEF.



Surface temperature relative to 1850-1900

Human influence has warmed the climate at a rate that is unprecedented in at least the

last 2000 years.
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Shifting Distribution of Land Temperature Anomalies, 1964-2024

Land Temperature Anomaly Distribution

1964

—/~/

a 2 0 +2 +4
Temperature Anomaly (°C)

The data visualization above shows how air temperatures between 1964 and 2024 departed from the average for
1951-1980.) The darker shades of blue represent times when temperatures were significantly cooler than the
norm and the orange and red represent times when temperature was hotter than the norm.



State of Cimate: Global Surface Temperature

= Met Office  The effect of [EENIfi®l and [EaNifia on global temperature
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State of climate: Not only Temperature

Trends in
Climate Indicators

Climate Indicators show the long-term
evolution of several key variables that are
used to assess the global and regional

trends of our changing climate.
Find out more @
»>
@ @ Glaciers
‘ @ Sea ice
Temperature Ice sheets
e

> C__~

t. * " .
L. | opermicus
Europe’s eyes on Earth



Changes at global scale

IpCC

INTERGOVERNMENTAL PANEL oN Climate chanee WMo UNEP
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Cimate status: Carbon Dioxide in Atmosphere

Latest Measurement: April 2024 The global CO, concentration increased from

427
PP ~277 ppmin 1750 to 419.3 ppm in 2023 (up 51%)
Atmospheric CO, concentration
420 ppm - Data: Scripps/NOAA-GML .
V
400 -
380
360 -
340 -
Seasonally
320 - corrected trend
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It Is Indisputable that human
activities are causing climate
change, making extreme climate
events, including heat waves,
heavy rainfall, and droughts,
more frequent and severe.

ipcC

INTERGOVERNMENTAL PANEL oN Climate chanee wMo UNEP




Human influence on climate change

b) Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)
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Cimate status: Carbon Dioxide in Atmosphere

tY) WORLD The Global Atmosphere Watch (GAW) global network for carbon dioxide in the
g/l METEOROLOGICAL . L.
\-"# ORGANIZATION last decade. The network for methane is similar.
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Cimate status: ENEA Contribution (GHG Measurement)

The ENEA Station for Climate Observations (Roberto
Sarao) on the island of Lampedusa is a research

facility in the Mediterranean dedicated to the
measurement of climatic parameters.

Lampedusa is an excellent site for studies on the
atmospheric composition and structure, on the
transfer of solar and infrared radiation, and for
oceanographic investigations.
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380
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Comparison of the evolution of atmospheric CO2
concentration at Madonie-Piano Battaglia since 2005 (red
dots) and at Lampedusa (blue curve)
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Cimate status: Carbon Dioxide

PROXY (INDIRECT) MEASUREMENTS .
Latest Measurement: April 2024
Data source: Reconstruction from ice cores.
Credit: NOAA 427 ppm
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Cimate status: Carbon Dioxide emissions

Global carbon emissions in 2023 remain at record levels — with no sign of the decrease that is

urgently needed to limit warming to 1.5° C, according to the Global Carbon Project science team.

Global Fossil CO, Emissions

40 Gt
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Cimate status: Carbon Dioxide emissions

Global carbon emissions in 2023 remain at record levels — with no sign of the decrease that is

urgently needed to limit warming to 1.5° C, according to the Global Carbon Project science team.

15 Gt Annual Fossil CO, Emissions and 2023 Projections

Projected Gt CO, in 2023
C02 Projected global emissions growth: +1.1% (+0.0% to +2.1%)
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Cimate status: Carbon Dioxide emissions

Global carbon emissions in 2023 remain at record levels — with no sign of the decrease that is

urgently needed to limit warming to 1.5° C, according to the Global Carbon Project science team.

15 Gt Annual Fossil CO, Emissions and 2023 Projections Annual fossil CO, emissions per capita: top six emitters

Projected Gt CO, in 2023
C02 Projected global emissions growth: +1.1% (+0.0% to +2.1%) All others 14.0
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Cimate status: Carbon Dioxide emissions by sector

GREENHOUSE GAS EMISSIONS

Global Emissions by Sector
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Changes at global scale
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Cimate status: Arctic Sea Ice Minimum Extent

ANNUAL SEPTEMBER MINIMUM EXTENT Key Takeaway:

Data source: Satellite observations. Credit: NSIDC/NASA Summer Arctic sea ice extent is shrinking by 12.2% per
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Changes at global scale
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Climate Status: Ice Sheets

ANTARCTICA MASS VARIATION SINCE 2002

Data source: Ice mass measurement by NASA's GRACE satellites. Gap Key Takeaway:

represents time between missions.

Credit: NASA RATE OF CHANGE

» 1140

Antarctica is losing ice mass (melting) at an average rate

of about 150 billion tons per year, and Greenland is losing

0 Vy‘v A billion metric tons per . . .
W\/\'\ year since 2002 about 270 billion tons per year, adding to sea level rise.
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Changes at global scale
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Two main causes for sea-level rise




Climate status: Ocean Warming

LATEST MEASUREMENT: December 2023 OCEAN HEAT CONTENT CHANGES SINCE 1955 (NOAA)

Data source: Observations from various ocean measurement devices,

+ .
360 (_ 2) ZettaJOUIGS including conductivity-temperature-depth instruments (CTDs), Argo

profiling floats, and eXpendable BathyThermographs (XBTs). Credit:
NOAA/NCEI World Ocean Database

Key Takeaway:
About ninety percent of global warming is occurring in
the ocean.
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Where's the Heat?

Earth's Accumulated Energy

Air, Land & Ice: 7%
Oceans:93%
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Two main causes for sea-level rise




Climate status: Sea Level since 1993

Latest annual average anomaly: 2023

103 (+=4.0) mm

SATELLITE DATA: 1993-PRESENT
Data source: Satellite sea level observations.
Credit: NASA's Goddard Space Flight Center
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Key Takeaway:
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n ) v Global sea levels are rising as a result of human-caused

global warming, with recent rates being unprecedented

{‘J’/‘/’ over the past 2,500-plus years.
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Change in sea level since 1900

Sea Level
Data source: Frederikse et al. (2020)
+
Credit: NASAs Goddard Space Flight 103 (£ 4.0) mm
o, Center/PO.DAAC
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Climate status

: Sea Level since 1700

Sea level (m)

-0.2 ]

ioe -

1700

T I T
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Year

Rate during 1901-1990 was 1.50 = 0.2 mm yr*
Rate during 1993-2010 was 3.07=% 0.37 mm yr~!

Rate during 2005-2017 was 3.50* 0.2 mm yr*

Compilation of paleo sea level data, tide

gauge data, altimeter data.



Climate related impacts
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2023 as the ‘climate stress-test’

Monthly global surface temperature increase above pre-industrial

Credit: C3S/ECMWF

Data: ERAS 1940-2024 « Reference period: 1850-1900
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2023: Escalation of Global Extreme Heat

15

Italy = 30Mha

'y
o

Burned area (Mha)

1 9'90 20'00 20l1 0 20l20 20l23
Annual area burned for Canada from the National Burned Area Composite (NBAC; 1986—

2022) and NBAC-M3 (Natural Resources Canada, 2023b) datasets. During 2023, 15 Mha
burned, compared to the annual mean of 2.1 Mha (1986-2022, dashed line). The next
largest annual area burned occurred in 1989 with 6.7 Mha.

Jain et al. 2024



2023: Escalation of Global Extreme Heat

The year 2023 was the hottest year on record. July 2023 was the hottest month ever
recorded and July 6, 2023 was the hottest day ever. Since then, each one of the last 12
months have broken their previous monthly record for highest average temperature

= Using World Weather Attribution criteria, the study identified 76 extreme heat waves
that span 90 different countries. These events put billions of people at risk, including
in densely populated areas of South and East Asia, the Sahel, and South America.

= QOver the 12-month period, 6.3 billion people (about 78% of the global population)
experienced at least 31 days of extreme heat (hotter than 90% of temperatures
observed in their local area over the 1991-2020 period) that was made at least two
times more likely due to human-caused climate change.

= Qver the last 12 months, human-caused climate change added an average of 26 days
of extreme heat (on average, across all places in the world) than there would have
been without a warmed planet.

CLIMATE World
; or
« + ( Climate Weather
Centre Attribution

CENTRAL



2023: Escalation of Extreme Heat in South America

Using World Weather Attribution criteria, the study identified 76 extreme heat waves that span 90
different countries. These events put billions of people at risk, including in densely populated areas of

South and East Asia, the Sahel, and South America.
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The five countries where the
average person experienced the
most days with extreme heat
above their local heat level were
Suriname with 182 days,
Ecuador with 180 days, Guyana
with 174 days, El Salvador with
163 days, and Panama with 149
days.

Without human-induced climate
change, the average person in
Suriname would have experienced
24 such days. That number was
10 days for Ecuador, 33 days for
Guyana, 15 days for El Salvador,
and 12 days for Panama.

i World
+ ( Climate Weather
Centre Attribution




Extreme weather and climate events on human health

Heat-related deaths have increased in 94% of European regions

Since 1970, extreme heat has been
the leading cause of weather- and
climate-related deaths in Europe.

23 of the 30 most severe
heatwaves have occurred since
2000, and five in the last three
years.

Between 55,000 and 72,000
deaths due to heatwaves were
estimated in each summer of
2003, 2010 and 2021. An estimate
for 2023 is not yet available.

In the World Health Organization’s
European Region, heat-related
mortality has increased by around
30% in the past 20 years. The
effect of heat on human health is
more pronounced in cities.
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Top 30 most severe heatwaves in Europe (1950-2023)
The size of a circle is proportional to the area affected
Data source: DWD - Credit: DWD/C3S/ECMWF



2023: Extreme sea surface temperature

Ranking of sea surface temperatures in 2023
Data: ESA SST CCl Analysis v3.0 « Data period: 1980-2023 (44 years)
Credit: ESACCI/EOCIS/UKMCAS/C3S/ECMWF

B varmest In 2023, the average sea surface

temperature (SST) for the ocean
across Europe was the warmest
on record. Parts of the

. 2nd warmest
. 3rd warmest

Warmer Mediterranean Sea and the
than avg northeastern Atlantic Ocean saw
(ranking 4 to 14)

their warmest annual average
SST on record.

Near
average
(ranking 15 to 29) In June, the Atlantic Ocean west
of Ireland and around the United
Cooler Kingdom was impacted by a
than avg marine heatwave that was
(ranking 30 to 41) .. ( ) .
classified as ‘extreme’ and in
3rd coolest some areas ‘beyond extreme’,
2nd coolest with sea surfoace temperatures
as much as 5° C above average.
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2022-2023: Extreme sea surface temperature
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Abstract

Since May 2022, the Mediterranean Sea has been experiencing an exceptionally long marine
heatwave event. Warm anomalies, mainly occurring in the Western basin, have persisted until
boreal spring 2023, making this event the longest Mediterranean marine heat wave of the last four
decades. In this work, the 2022/2023 anomaly is characterized, using in-situ and satellite
measurements, together with state of the art reanalysis products. The role of atmospheric forcing is
also investigated; the onset and growth of sea surface temperature anomalies is found to be related
to the prevalence of anticyclonic conditions in the atmosphere, which have also caused severe
droughts in the Mediterranean region over the same period. Analysis of in-situ observations from
the Lampedusa station and of ocean reanalyzes reveals that wind-driven vertical mixing led to the
penetration of the warm anomalies below the sea surface, where they have persisted for several
months, particularly in the central part of the basin. The evolution of the 2022/23 event is
compared with the severe 2003 event, to put recent conditions in the context of climate change.
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2022-2023: Extreme sea surface temperature
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Figure 1. Overview of Mediterranean SST conditions in 2022/23 based on satellite data. (a) Daily mean Mediterranean basin SST
time series (red line) and corresponding baseline 1991-2020 (blue line); (b) basin scale SST anomalies over the same period. Five
dates (indicated as d1-5) are selected to represent pre-MHW conditions, the MHW onset, one of its summer peaks, the January
peak and spring 2023. For each date, anomaly maps (panels (d1)-(d5)) and corresponding frequency histograms (panels
(c1)—(c5)) are shown. The locations of mooring stations are indicated with pink markers (X for LION, 4 for ODAS, # for LMP,
and * for EIM3A) in (d1).




2023:. Medicane (Mediterranean Hurricane) Daniel

Storm Daniel, also known as Cyclone Daniel, was the
deadliest Mediterranean tropical-like cyclone in recorded
history, as well as one of the costliest tropical cyclones on
record outside of the north Atlantic Ocean.

Storm Daniel formed over the Mediterranean Sea in early
September 2023 and caused significant flooding and
damage in multiple countries, including Greece, Turkey,
Bulgaria, and Libya. As it moved across the Mediterranean,
it gained strength from the unusually warm sea surface
temperatures, which is typical for medicanes.

These storms, while infrequent, are becoming more
intense due to climate change, which increases the
amount of moisture they can carry and the energy
they derive from warmer waters.

Medicane Daniel was particularly devastating in
Libya, where it led to catastrophic flooding and
significant loss of life, especially in the city of Derna,
due to the collapse of dams under the heavy rainfall
brought by the storm
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2023: Medicane (Mediterranean Hurricane) Daniel
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Map animation tracking Storm Daniel as it unleashed record rainfall across the Eastern Mediterranean
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2023:. Medicane (Mediterranean Hurricane) Daniel

Flood damage in Derna. Libva.

B~ e

At least 4700
confirmed deaths
in Libya have
been attributed
to the flooding
following Storm
Daniel, with 8000
still missing.




Annual glacier mass change
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Renewable energy resources

Percentage of the total annual actual electricity

generation for Europe from different sources *2003 saw arecord proportion of

actual electricity generation by
Solar power [l Wind power [l Hydro power renewables in Europe, at 43%.

*Climate-driven electricity demand
was above average in southern
Europe, due to cooling required
during exceptional summer
temperatures, and in Scandinavia,
where cooler-than-average

43%
37%
3500 36%
3100 2 temperatures in several months led

28% 28% to increased demand for heating.
*Increased storm activity through
October to December resulted in
above-average potential for wind
power production.
*For the year as a whole, potential
for solar photovoltaic power

generation was below average in
0
2016 2017 2018 2019 2020 2021 2022 2023 northwestern and central par.ts of
Europe, and above average in
Data: ENTSO-E and Elexon - Credit: C3S/ECMWF southwestern and southern Europe,
and Fennoscandia.
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Historical fossil fuel and land use emissions

BAL CARBON BUDGET

If current emissions levels persist,

there is now a 50% chance
that global warming of

could be exceeded in
seven years



State of Cimate: Carbon Dioxide emissions

The SSPs were designed to span the range of potential outcomes. Total CO, emissions are
currently tracking in the middle of the range. The temperature outcomes are based on assessed

scenarios in IPCC AR6 Working Group I.

Global CO, Emissions SSP, median °C (very likely range)

O—SSP5-8.5: 4.4°C (3.3-5.7)

120 -
CO,

Temperature range

O—SSP3-7.0: 3.6°C (2.8-4.6)
80

40

net-negative global emissions
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—~

GLOBAL{CARBON



Future climate scenario
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How climate change is disrupting the water cycle

A warmer climate increases moisture transport into weather systems, which, on
average, makes wet seasons and events wetter

The Clausius—Clapeyron equation determines that low-altitude specific humidity
increases by about 7% ° C! of warming, assuming that relative humidity remains
constant, which is approximately true at a global scale but not necessarily valid
regionally.

Warmer temperatures are heating the lower atmosphere and increasing evaporation,
adding more water vapor to the air. More water in the air means a greater chance of
precipitation, often in the form of intense, unpredictable storms. Conversely, increased
evaporation can also intensify dry conditions in areas prone to drought, with water
escaping into the atmosphere rather than staying on the ground where it's needed.
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Future Scenarios global sea level

L2 Low-likelihood, high-impact storyline,
including ice sheet instability
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Regional Sea Level
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Regional sea-level trends from satellite altimetry for the period: October 1992 to July 2009

Spatial differences are due to the steric effect. Nicholls & Cazenave, 2010 ENEN



SROCC & IPCC AR6 — WGI Chapter 9

The SROCC estimated regional sea-level changes from combinations of the
various contributions to sea-level change from CMIP5 climate model outputs,
allowing comparison with satellite altimeter and tide-gauge observations. Closure
of the regional sea-level budget is complicated by the fact that regional sea-level
variability is larger than GMSL variability and there are more processes that
need to be considered, such as vertical land movement and ocean dynamical
changes.

Since CMIP6 models are of fairly coarse (typically ~100km) resolution, and even
the models participating in HighResMIP (near 10km resolution) do not capture all
the phenomena that contribute to coastal ocean dynamic sea-level change, there
Is low confidence in the details of ocean dynamic sea-level change along the
coast and in semi-enclosed basins, like the Mediterranean, where coarse
models can misrepresent key dynamic processes.



Global climate models: present climate seasonal means

Seasonal means

Sea Surface Height Above Geoid m Sea Surface Height Above Geoid m
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Mediterranean sea level reproduced by CMIP5* global models (present climate)

*Coupled Model Intercomparison Project - https://cmip.linl.gov/cmip5/



Background geography
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Strait of Gibraltar Background: 3D Bathymetry




Strait of Gibraltar Background
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Strait of Gibraltar Background: Physics

Strong mixing and entrainment mainly driven by the
very intense tides.
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Hydraulics jump: an example




Sub-basin Model (POM): Cadiz — Gibraltar - Alboran
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Sub-basin Model (POM): Cadiz — Gibraltar - Alboran
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MITgcm model simulation
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Turkish Strait System Background: Previous modelling works

The Turkish straits system is a complex environment characterized by
highly contrasting properties in a region of high climatic variability.

An all time challenge is the modeling of the entire system:
Dardanelles — Maramara Sea — Bosphorous.

-200 0 200 400 600 800 1000 1200 1400 1600

depth (m) Question:

can we use state-of-art

+ finite difference model to
| reproduce correctly the
TSS circulation?

Sannino et al.
OoDY 2017
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Toward a new climate Mediterranean Black Sea model
Bathymetry

Bathymetry
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ENEA Hi-resolution Mediterranean Climate Model

Palma et al 2019 — Ocean Dynamic Sea Surface Height
Time: 2011-12-06 00:00

o>
<

Sea Surface Height (m)

41 ................. _>

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

MITgcm — Explicit Tides (M2,S2, K1, O1) — Lateral Tide + Tidal Potential
Average resolution 1/16° (7 Km)
Minimum resolution at Gibraltar (230m) and Turkish Straits (90m)

100 Vertical Levels M



ENEA Hi-resolution Mediterranean Climate Model
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Hi-resolution Mediterranean Climate Model
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Hi-resolution Mediterranean Climate Model

Surface (15 m of
depth) and
intermediate (300 m
of depth) circulation,
averaged over the
simulation periods of
the hindcast (left
panel) and of the
historical (right

panel) experiments
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Hindcast Mediterranean Sea Level
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Future (2100) Mediterranean SST (rcp 8.5)

Surface Temperature projection - rcp 8.5
2022
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Future (2100) Mediterranean Sea Level

Time evolution of the
components
contributing to the
projected mean sea
level in the
Mediterranean under
the RCP8.5. Solid lines
represent the central
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Future (2100) Mediterranean Sea Level (rcp 8.5)

Sea level rise projection - rcp 8.5
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Causes of R-SLR at  obal, egional and ocal scale

= Melting Greenland and Antarctica

= Melting Glaciers and ice caps

= QOcean Thermal expansion

= (QOcean Circulation

= Postglacial rebound, self-attraction and loading
= Land Hydrology

= Tides, Storm surge, Subsidence
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Future (2100) Mediterranean Sea Level
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Future (2100) Mediterranean Sea Level
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Future (2100) Mediterranean Sea Level
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Modello climatico ENEA: mappe allagamento
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Regional Earth System Model: ENEA-REG

ATM Model
» WRF (12 km), 51 vertical levels (up to 10 hPa)

60N —

Ocean model
> MITgem (1/12° ) over Med, GCM otherwise

River routing model
> HD(0.5° )

40N 4 .

Driving models
» ERADS5 (reanalysis), MPI-ESM1-2-HR (CMIP6)

Emission Scenario
» Historical, SSP126, SSP245 and SSP585

Temporal period
> Historical: 1980-2014
» Scenario: 2015-2100

WCRP-2"CMIP6

World Climate Research Programme



ENEA Regional Earth System Model

» Atmospheric Component: WRF
(v4.2.2)
NOAH-MP
» Ocean model: MITgcm (z67)
HD
» Coupler: RegESM

Anav et al., 2021, GMD
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Future (2100) Mediterranean SST(CMIP6)

Annual surface air temperature (°C)
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Future (2100) Mediterranean T2m
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Future (2100) Mediterranean Sea Level (CMIP6)

Sea Surface Height (cm)
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Total Sea level change averaged over the Mediterranean basin for the three SSP scenarios.
Median over the AR6 models (red line) and 17th-83rd percentile range (shaded area).
Projections are relative to a 1995-2014 baseline. Total using for the oceanic components MPI
and MITgcm models are plotted in blue.



Future (2100) Mediterranean Sea Level (CMIP6)
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“What’s the use of having developed a science well enough to
make predictions if, in the end, all we're willing to do is stand

around and wait for them to come true?”

— F. Sherwood Rowland (Nobel laureate)



Glanmaria Sannino
gianmaria.sannino@enea.it
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